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Abstract—The classification of unmanned aerial vehicles
(UAVs) via radio-frequency (RF) signals employs advanced
signal-processing and machine-learning techniques to identify
and categorize emissions, playing a fundamental role in security
and surveillance applications in sensitive environments. The pre-
sent study conducts a comparative analysis between the VGG-16
and Transformer architectures, aiming to identify preprocessing
and model configurations that maximize classification accuracy
for drone RF signals without compromising computational feasi-
bility in defense-embedded systems. Applying the VGG-16 model
with 20 ms time blocks resulted in approximately 97 % accuracy
and F1-score, outperforming classical methods (linear regression
and k-NN) by up to 17 percentage points. Furthermore, it
was found that all deep models exhibited significant gains
when operating on spectrogram inputs, substantially surpassing
traditional approaches.

Keywords— RF-based UAV Classification, CNN, Vision Trans-
formers.

I. INTRODUCTION

The classification of drones by radiofrequency (RF) is based
on the use of advanced signal processing and machine learning
techniques to identify and categorize RF emissions, playing
a critical role in security and surveillance. Its historical deve-
lopment includes tests of radio-controlled balloons in 1917,
the Hs 293 missile in 1935, the V-1 bombs in 1944, the MQ-1
Predator in 1950, the Zenit-2 spy satellite in 1964, the Matra
MILAN combat drone in 1970, the use of UAVs in Lebanon
in 1982, and its widespread adoption in the Afghanistan War
in 2001 [1].

In current conflicts—such as in Ukraine and the Middle
East—small drones have exposed vulnerabilities in defense
systems, leading the U.S. Army to plan over US$ 400 million
in 2025 for the development of integrated counter-drone sys-
tems [2]]. Beyond the military context, UAVs threaten critical
infrastructure through targeted attacks, smuggling, espionage,
and collisions, which has driven proposals for multisensor
fusion, artificial intelligence, and advanced machine learning
algorithms to identify drone models and predict their trajec-
tories and intentions.

II. PROBLEM FORMULATION

Due to the increasing deployment of UAVs in civilian and
military operations, there is a need for precise and efficient
methods to classify drones based on radiofrequency (RF)
signals. The key issues to be addressed include:
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« Temporal Segmentation: How to determine the optimal
granularity (30, 20, 15, 10, or 5 ms) for generating
RF spectrograms that preserve discriminative information
without incurring computational overload.

o Spectrogram vs. Block Trade-off: What is the impact
of the number of spectrograms generated per unit time
(i.e., processing block size) on accuracy and inference
cost for the evaluated models.

« Architecture Comparison: In which scenarios attention-
based models (Vision Transformers) outperform or fall
short of convolutional architectures (VGG-16) in the task
of classifying drone RF signals.

The objective of this work is to formulate, implement,
and experimentally evaluate these questions by conducting
a comparative analysis between VGG-16 and Transformers
to identify preprocessing and architecture configurations that
maximize classification accuracy for drone RF signals while
maintaining computational feasibility for defense-embedded
systems.

III. RELATED WORK

RF-based drone classification is an essential research field,
as it allows the identification and categorization of unmanned
aerial vehicles from their RF emissions [3]. This capability
proves particularly critical in security and surveillance ap-
plications in sensitive areas. To improve the accuracy and
efficiency of these classifications, advanced signal processing
and machine learning techniques have been employed.

Among the processing approaches, the Short-Time Fourier
Transform (STFT) stands out for converting RF signals to
the time-frequency domain, enabling the extraction of discri-
minative features. In [3], STFT was used to generate time-
frequency spectra encoded as 2D images, which were fed
into a CNN and achieved high performance on datasets such
as DroneRF and DroneRFa. Complementarily, spectrogram
analysis has been used to capture the evolution of frequency
signatures over time, extracting statistics such as mean, va-
riance, and spectral entropy, which are then classified by
ensemble methods such as XGBoost and KNN [4].

In the deep learning domain, Convolutional Neural
Networks enable the recognition of subtle patterns in RF
signal representations. Residual CNN models have been ap-
plied in multipath scenarios, demonstrating robustness even
under challenging conditions [5]. Additionally, object de-
tection algorithms like YOLO have been adapted to treat
RF spectrograms as images, improving performance through
strategic annotation of transmission bursts [6]].



However, relevant challenges persist. The scarcity of com-
prehensive datasets limits the generalization capability of
models [7]], and the careful selection of features extracted
from the signals—such as mean, skewness, and entropy—is
fundamental to maximizing classification effectiveness [S8]].
Emerging techniques, such as sigmoid calibration, have been
integrated into frameworks to adjust predicted probabilities
and increase reliability in multiclass tasks [9]. Meanwhile,
proposals that unify detection and classification in a single
pipeline, as demonstrated in [10], offer efficiency gains in
scenarios with multiple simultaneous signals.

IV. MATERIALS AND METHODS

The detection system involves a UAV, its controller device,
and two receiving stations responsible for measuring the
signal strength emitted by the UAV—the first (Rx1) dedicated
to the low-frequency band and the second (Rx2) to the
high-frequency band—as illustrated in Figure [l These RF
transmissions correspond to the communication link between
the UAV and the controller, being captured by environment-
specific receivers, whose characteristics are detailed in Ta-
ble 3. Finally, the collected data are transferred, stored, and
processed on a computer or other interface equipment capable
of handling and presenting RF data [[L1].
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Fig. 1: Schematic of the detection system.

The DroneDetect corpus [12] is a dataset of RF signals
from unmanned aerial systems, collected via BladeRF SDR
and processed in GNURadio, designed for machine lear-
ning-based detection and classification tasks. It includes I/Q
recordings of seven UAV models—AIR, MA1, MAV, INS,
MIN, PHA, and DIS—sampled at 60 MHz with a 28 MHz
bandwidth. In this study, the signals were segmented into
blocks of 5, 10, 15, 20, 25, and 30 ms, normalized using
the z-score, and subjected to STFT (1024-point window,
120-sample overlap). The magnitudes in dB of the positive
frequencies were converted into 224x224 images (inferno
colormap).

A grid search algorithm was implemented to find the best
hyperparameters for two spectrogram-based drone classifica-
tion architectures:

e VGG-16: consists of a Flatten block, followed by

a fully connected layer with 256 ReLU units, a 50%
Dropout, and a softmax classification layer. Optimal
hyperparameters: learning rate 1 x 10~5, 256 dense units,
dropout rate 0.5.
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e ViT-Tiny: uses 32x32 patches projected to 32-
dimensional embeddings, followed by four Transformer
blocks with two attention heads and a 64-dimensional
MLP, before global pooling and a softmax head. Optimal
hyperparameters: learning rate 1 x 107°, embedding
dimension 32, MLP dimension 64, dropout rate 0.3.

Both models used 224x224 images, a batch size of 32,
and a fixed seed of 42. The data were split stratified: 80%
training, 10% validation, 10% testing. During training, data
augmentations (rescaling, rotations up to +8°, shifts up to
5%, horizontal flips) were applied. The Adam optimizer was
used with initial learning rate 1 x 1075, and cross-entropy
loss. Callbacks saved checkpoints each epoch and performed
early stopping with a patience of 10 epochs.

While VGG-16 exploits local patterns via deep convoluti-
ons, ViT-Tiny models global dependencies through attention
mechanisms.

The dataset contains no background noise, so all simula-
tions considered exclusively drone signals without ambient
noise or interference.

In the first simulation, a block size of 50 ms was employed
(Table [l). Subsequent simulations were performed with 30 ms
(Table [, 20ms (Table [[), 15ms (Table [[V), 10 ms (Ta-
ble [V), and finally 5ms (Table [VI), with the corresponding
confusion matrices detailed in 2} [3| ] Bl [6] and [7] respectively.
Each block duration configuration allowed the investigation of
the impact of temporal resolution on classification accuracy
for the VGG-16 and Transformer architectures.

V. RESULTS AND ANALYSIS

A. Average Performance Analysis by Drone Type across Mo-
dels

Overall, when averaging recall for each drone type across
all block durations:

e VGG-16 vs. ViT-Tiny: VGG-16 consistently outper-
forms the Transformer in almost all classes, with the
largest gains in “AIR” and “MP2.”

o Class MIN: Both models achieve nearly 100% accuracy
on “MIN,” suggesting this drone type is spectrally dis-
tinct from the others.

o Classes DIS and PHA: High average accuracy (> 0.95
for VGG-16 and ~ 0.94 for the Transformer), indicating
clear spectral characteristics.

« Most challenging classes: “MP1” and especially “MP2,”
where the Transformer drops to ~ 0.80, while VGG-16
remains around ~ 0.95.

Practical Conclusion: As shown in Figures [8] [ and
@], the VGG-16 (CNN) demonstrates greater robustness and
consistency in classifying RF signals of these drones at dif-
ferent temporal resolutions (block sizes), particularly in more
ambiguous cases (“AIR,” “MP2”). The Transformer, although
competitive for some classes (e.g., “MIN,” “INS”), struggles
with spectral overlap for drones with similar signatures (“AIR”
vs. “MP2”).
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Fig. 2: Confusion Matrix - Results for VGG-16 and Transformer (Block = 50 ms)

TABLE I: Comparison of Classification Results for VGG-16 and Transformer (Block = 50 ms)

VGG-16 Transformer
Class Precision  Recall Fl-score Support Class Precision  Recall Fl-score Support
AIR 0.9655 0.9333 0.9492 60 AIR 0.8936 0.7000 0.7850 60
DIS 1.0000 1.0000 1.0000 40 DIS 0.9750 0.9750 0.9750 40
INS 0.9508 0.9667 0.9587 60 INS 0.8438 0.9000 0.8710 60
MIN 1.0000 1.0000 1.0000 60 MIN 0.9677 1.0000 0.9836 60
MP1 0.9333 0.9333 0.9333 60 MP1 0.9804 0.8333 0.9009 60
MP2 0.9344 0.9500 0.9421 60 MP2 0.7200 0.9000 0.8000 60
PHA 1.0000 1.0000 1.0000 40 PHA 0.9512 0.9750 0.9630 40
Accuracy 0.9658 380 Accuracy 0.8895 380
Macro avg 0.9692 0.9690 0.9690 380 Macro avg 0.9045 0.8976 0.8969 380
Weighted avg 0.9659 0.9658 0.9658 380 Weighted avg 0.8984 0.8895 0.8893 380
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Fig. 3: Confusion Matrix - Results for VGG-16 and Transformer (Block = 30 ms)

TABLE II: Comparison of Classification Results for VGG-16 and Transformer (Block = 30 ms)

VGG-16 Transformer
Class Precision  Recall Fl-score Support Class Precision  Recall Fl-score Support
AIR 0.9681 0.9192 0.9430 99 AIR 0.8537 0.7071 0.7735 99
DIS 1.0000 1.0000 1.0000 66 DIS 1.0000 0.9848 0.9924 66
INS 0.9792 0.9495 0.9641 99 INS 0.8738 0.9091 0.8911 99
MIN 0.9900 1.0000 0.9950 99 MIN 0.9423 0.9899 0.9655 99
MP1 0.9785 0.9192 0.9479 99 MP1 0.8763 0.8586 0.8673 99
MP2 0.8584 0.9798 0.9151 99 MP2 0.7931 0.9293 0.8558 99
PHA 0.9846 0.9697 0.9771 66 PHA 0.9333 0.8485 0.8889 66
Accuracy 0.9601 627 Accuracy 0.8868 627
Macro avg 0.9655 0.9625 0.9632 627 Macro avg 0.8961 0.8896 0.8906 627
Weighted avg 0.9627 0.9601 0.9605 627 Weighted avg 0.8886 0.8868 0.8854 627
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Fig. 4: Confusion Matrix - Results for VGG-16 and Transformer (Block = 20 ms)

TABLE III: Comparison of Classification Results for VGG-16 and Transformer (Block = 20 ms)

VGG-16 Transformer
Class Precision  Recall Fl-score Support Class Precision  Recall Fl-score Support
AIR 0.9355 0.9667 0.9508 150 AIR 0.9328 0.7400 0.8253 150
DIS 1.0000 0.9900 0.9950 100 DIS 0.9608 0.9800 0.9703 100
INS 0.9669 0.9799 0.9733 149 INS 0.7609 0.9396 0.8408 149
MIN 1.0000 1.0000 1.0000 150 MIN 0.9804 1.0000 0.9901 150
MP1 0.9789 0.9267 0.9521 150 MP1 0.9385 0.8133 0.8714 150
MP2 0.9423 0.9800 0.9608 150 MP2 0.8313 0.8867 0.8581 150
PHA 0.9787 0.9388 0.9583 98 PHA 0.9495 0.9592 0.9543 98
Accuracy 0.9694 947 Accuracy 0.8955 947
Macro avg 0.9718 0.9689 0.9700 947 Macro avg 0.9077 0.9027 0.9015 947
Weighted avg 0.9699 0.9694 0.9694 947 Weighted avg 0.9028 0.8955 0.8950 947
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Fig. 5: Confusion Matrix - Results for VGG-16 and Transformer (Block = 15 ms)

TABLE 1V: Comparison of Classification Results for VGG-16 and Transformer (Block = 15 ms)

VGG-16 Transformer
Class Precision  Recall Fl-score Support Class Precision  Recall Fl-score Support
AIR 0.9727 0.8900 0.9295 200 AIR 0.9091 0.8000 0.8511 200
DIS 0.9773 0.9699 0.9736 133 DIS 0.9847 0.9699 0.9773 133
INS 0.9497 0.9545 0.9521 198 INS 0.8673 0.8586 0.8629 198
MIN 0.9755 1.0000 0.9876 199 MIN 0.9900 1.0000 0.9950 199
MP1 0.9792 0.9400 0.9592 200 MP1 0.8462 0.9350 0.8884 200
MP2 0.9279 0.9698 0.9484 199 MP2 0.7865 0.7588 0.7724 199
PHA 0.9028 0.9774 0.9386 133 PHA 0.8966 0.9774 0.9353 133
Accuracy 0.9556 1262 Accuracy 0.8922 1262
Macro avg 0.9550 0.9574 0.9556 1262 Macro avg 0.8972 0.9000 0.8975 1262
Weighted avg 0.9566 0.9556 0.9555 1262 Weighted avg 0.8926 0.8922 0.8913 1262
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Fig. 6: Confusion Matrix - Results for VGG-16 and Transformer (Block = 10 ms)
TABLE V: Comparison of Classification Results for VGG-16 and Transformer (Block = 10 ms)
VGG-16 Transformer
Class Precision Recall Fl-score Support Class Precision Recall Fl-score Support
AIR 0.9329 0.9733 0.9527 300 AIR 0.9054 0.8933 0.8993 300
DIS 0.9461 0.9650 0.9554 200 DIS 0.9643 0.9450 0.9545 200
INS 0.9590 0.9430 0.9509 298 INS 0.8842 0.9228 0.9031 298
MIN 1.0000 0.9933 0.9967 300 MIN 0.9834 0.9900 0.9867 300
MP1 0.9650 0.9200 0.9420 300 MP1 0.9301 0.8433 0.8846 300
MP2 0.9058 0.9300 0.9178 300 MP2 0.8056 0.8567 0.8304 300
PHA 0.9643 0.9450 0.9545 200 PHA 0.9059 0.9150 0.9104 200
Accuracy 0.9526 1898 Accuracy 0.9073 1898
Macro avg 0.9533 0.9528 0.9529 1898 Macro avg 0.9113 0.9095 0.9099 1898
Weighted avg 0.9531 0.9526 0.9526 1898 Weighted avg 0.9088 0.9073 0.9075 1898
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Fig. 7: Confusion Matrix - Results for VGG-16 and Transformer (Block = 5 ms)
TABLE VI: Comparison of Classification Results for VGG-16 and Transformer (Block = 5 ms)
VGG-16 Transformer
Class Precision  Recall Fl-score Support Class Precision  Recall Fl-score Support
AIR 0.9386 0.9433 0.9410 600 AIR 0.9456 0.9267 0.9360 600
DIS 0.8630 0.9450 0.9021 400 DIS 0.9392 0.8500 0.8924 400
INS 0.9071 0.9664 0.9358 596 INS 0.8639 0.8842 0.8740 596
MIN 0.9966 0.9750 0.9857 600 MIN 0.9983 0.9750 0.9865 600
MP1 0.9736 0.9217 0.9469 600 MP1 0.9494 0.8133 0.8761 600
MP2 0.9303 09117 0.9209 600 MP2 0.7708 0.8967 0.8290 600
PHA 0.9231 0.8700 0.8958 400 PHA 0.8516 0.9325 0.8902 400
Accuracy 0.9360 3796 Accuracy 0.8975 3796
Macro avg 0.9332 0.9333 0.9326 3796 Macro avg 0.9027 0.8969 0.8977 3796
Weighted avg 0.9374 0.9360 0.9361 3796 Weighted avg 0.9035 0.8975 0.8984 3796
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Fig. 10: Accuracy per Class - ViT-Tiny Model

Although the VGG-16 model excelled in performance me-
trics, the ViT-Tiny model has a significantly smaller footprint,
as shown in Table [VII] and may be the more suitable option
for embedded implementations on a Raspberry Pi. Embed-
ded models can offer various benefits in drone classification
scenarios involving autonomous drones, where weight, power
consumption, and response time are critical constraints.

TABLE VII: Comparison of model efficiency metrics

Model Params FLOPs Latency (ms) Memory (GB) Thr (img/s) Size (MB)
VGG-16 138M 155G 12.4+0.3 1.8 80 528
ViT-Tiny 11M  13G 100+ 5 0.2 10 35

B. Comparative Analysis

The VGG-16 model with a 20 ms block achieves the best
performance (approx 97 % accuracy/F1), outperforming all
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TABLE VIII: Model performance

Model Metric ~ Spectrogram (%)
e 13 B mesos
enn B e
VGG-16 20ms) A %5
ViTTiny (10ms) 1 %07

classical methods. The ViT-Tiny with a 10 ms block reaches
about 91 %, i.e., approximately 11 pp above k-NN and 2 pp
above LR in the same domain, but still 6 pp below VGG.
Traditional classifiers (LR, k-NN) lag by 8-17 pp compared
to the best deep models when operating on spectrograms.

VI. CONCLUSION

In summary, on the DroneDetect corpus for drone RF
classification, deep models surpassed classical baselines. With
20 ms blocks, VGG-16 reached ~ 97% accuracy/F1; ViT-Tiny
achieved ~ 91%, up to 17 percentage points above linear
regression and k-NN. VGG-16 offers top precision but is he-
avy (138 M params; 15.5 G FLOPs), whereas ViT-Tiny is lean
(11 M; 1.3 G), suiting energy/memory/latency-constrained em-
bedded use. Thus, choosing architecture and block length
entails a performance—efficiency trade-off.
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